
Robotics
Week 4 Practical: Probabilistic Motion and Sensing

Andrew Davison
ajd@doc.ic.ac.uk

1 Introduction

This week we will revisit robot motion and sensing but now with a probabilistic viewpoint, understand-
ing how to model and reason about uncertainty. This practical lays the groundwork for next week’s
session where these components will be brought together into a full algorithm for Monte Carlo Locali-
sation, a probabilistic localisation filter.
This practical will be ASSESSED. There are 30 marks to be gained for completing the objectives
defined for today’s practical, out of a total of 100 for the coursework mark for Robotics over the whole
term. Assessment will take place via a short demonstration and discussion of your robots and other
results to us or our lab assistants AT THE START OF THE PRACTICAL SESSION ON THURSDAY
NEXT WEEK, 9th NOVEMBER. No submission of reports or other materials is required. We will
assign marks based on our judgement of whether each objective has been successfully achieved, and
I will confirm these marks to you every week by email. At the end of term I will create a dummy
coursework on CATE which will be used to fill in your total coursework mark.

2 Objectives

2.1 Representing and Displaying Uncertain Motion with a Particle Set (18 Marks)

In Practical 1 we saw clearly that even after careful calibration, a robot’s estimate of its motion based on
odometry measurement will always have uncertainty. In today’s lecture I explained how in probablistic
robotics, one way represent this uncertain estimate and how it changes over time is via a particle dis-
tribution. The figure below shows an example particle distribution evolving over time to represent the
growing uncertainty in the position of a robot navigating using only odometry, though with a different
scale and motion pattern from what we will be using today.

1



Write a program which represents the uncertain motion of your moving robot via a particle distribution
to achieve a similar result, and displays the results in the form of a cloud of particles drawn in real-time
using our Pi web interface (see below).
You will need to demonstrate this program to us next week. Program your robot to follow a full 40cm
square trajectory as in Practical 1 using position control, though make your robot move in 10cm
steps, stopping after each movement or turn. We want to see the particle distribution on screen,
updating in real-time after each movement. The particles should move after every robot movement
step, and spread out gradually to represent its growing uncertainty during this motion. No outward
looking sensors are to be used in this part so the uncertainty should always get bigger after each step.
Note that you should clear the screen each time you redisplay the particles, so that we just see the new
state of the particles rather than showing the whole history as in the figure above.
In preparation for next week your robot should run on the lab carpet rather than paper, and you may
need to alter your tuning and calibration parameters slightly to get accurate motion on carpet.
At the start of motion, the set of particles should all be initialised to the origin (x = 0, y = 0, θ = 0).
Each time the robot stops, you should update the position of the particles using the equations below:

• After a straight-line period of motion of distance D: xnew
ynew
θnew

 =

 x+ (D + e) cos θ
y + (D + e) sin θ

θ + f


• After a pure rotation of angle angle α: xnew

ynew
θnew

 =

 x
y

θ + α + g


Here e, f and g are noise terms, which are generated for each particle separately by sampling random
numbers with zero mean and an appropriate standard deviation from a Gaussian distribution. Adding a
small different random amount onto the position of each particle like this will cause spreading like you
see in the diagram.
The best way to adjust the standard deviations of the Gaussians for each of e, f and g which you sample
is by running the whole program for the square trajectory and observing the total amount of particle
spreading which occurs. In principle, this should agree approximately with the amount of uncertainty
you think your robot has in its motion. So if you robot can complete the square trajectory and get back
to its starting point with around a 3cm standard deviation total error, look for this amount of spread in
the particles at the end of the motion. Note that it usually makes sense to err on the side of too much
uncertainty in the way that the particles spread out because when the robot is out in the real world and
especially running on carpet it may be less precise than during the experiment we did on paper two
weeks ago. We would expect that the particles spreading out to around 5cm standard deviation over the
whole square motion would be reasonable for most robots.
The following sections have some more details.

2.1.1 Web Interface and Displaying Output

You may have already been using the web interfact with your Raspberry Pi Robots which makes it
much easier to interact with programs running on the Pi from any device on the college network (PC,

2



tablet, etc.). We are providing a web server, implemented in node.js, which you should install on your
Raspberry Pis. You can then connect to this webserver from your PC or device. Note that we have
also created an easy web-based way to query your Pi’s current IP address which provides immediate
click-through to your Pi’s web interface when you provide the MAC address.
You can copy programs to the Pi through this interface, run them and see text output in the browser.
Also, it enables real-time 2D graphics output from your Pis via special formatted Python print state-
ments.
You will still write programs in Python in the usual way, and can still copy them to your Pi and execute
them over scp/ssh as before.
For full instructions on how to install the web server, access it from a PC or device, copy and run
Python programs and use the special drawing commands, see: http://www.doc.ic.ac.uk/

˜ajd/Robotics/RoboticsResources/webviewer.txt

2.1.2 The Particle Set

The set of particles, each of which has values for xi = (xi, yi, θi) and weight wi, can be stored in pre-
allocated Python arrays of length NUMBER OF PARTICLES. A suitable initial value for
NUMBER OF PARTICLES this week is 100.
In this week’s practical, the weights wi of the particles will not be important and should just be set to
1/ NUMBER OF PARTICLES. The weights become important next week when we incorporate sonar
measurements.
The web interface provides a simple way to display a set of points on screen to represent the positions
of a particle set. You should experiment to find a suitable scale so that the particle set stays within the
bound of the interface window at all times.

2.1.3 Generating Random Numbers

Random numbers for use in the particle movement can be easily generated in Python using the random
module. See http://docs.python.org/2/library/random.html for full documentation.
In particular, this week you will need to generate random numbers sampled from a Gaussian distribu-
tion. The function
random.gauss(mu, sigma) generates a random number sampled from a Gaussian distribution
with mean mu and standard deviation sigma.

2.2 Waypoint Navigation (6 Marks)

The proof of good localisation is if it can be used to achieve accurate navigation. You can make a point
estimate of the current position and orientation of the robot by taking the mean of all of the particles:

x̄ =
N∑
i=1

wixi .

Based on this estimate you can then control the robot to move towards a target location. Note that this
week, this mean estimate is just calculated from odometry so is not very interesting — as the particles
spread out as uncertainty increases, their mean will not change — but with this machinery in place you
will be set up for next week when the particle distribution will also be affected by sonar measurements.

3

http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/webviewer.txt
http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/webviewer.txt
http://docs.python.org/2/library/random.html


Provide your robot with the capability to perform position-based navigation via simple path planning
through a set of waypoints. A waypoint is an (Wx,Wy) position relative to the world coordinate frame
W through which the should pass. Write a function navigateToWaypoint(float X, float
Y) which, given the robot’s current estimated location (x, y, θ), drives it to the waypoint at (Wx,Wx).
Most straightforwardly this will be achieved by first a turn on the spot through the appropriate angle
and then a straight forward motion of the right distance. Refer back to the lecture notes from week 2 on
position-based path planning, and please use the same 2D coordinate frame convention defined in the
figures in that lecture such that the robot starts at (x, y, θ) = (0, 0, 0) with its forward direction aligned
with the x-axis, the y axis points left and positive θ representing a turn to the left.
Prove the operation of your path planning function to use by demonstrating a short interactive program
where a user is asked to enter (Wx,Wy) coordinates in metres which the robot will then move to before
asking for more coordinates.
(Again, bear in mind that at this stage your robot is navigating only based on odometry so there will be
inevitable drift in its position over long motions; but with this machinery in place we will be ready to
implement a full MCL localisation and navigation system next week.)

2.3 Sonar Investigation (6 Marks)

The sonar is the crucial outward-looking sensor which we will use to make contact with the mapped
world in Monte Carlo Localisation next week.
This week we will make some initial quantitive investigation of its properties. We will attempt to
calibrate the sonar by comparing the values it returns with ground truth obtained from measurements
with a ruler or tape measure (there are some around the lab and I should have some spares). Set up your
sonar sensor with a simple program to read continuously and report depth values to the screen (look at
the example program ultrasonic example.py on your Raspberry Pis to see how to do this).

2.3.1 Sonar Calibration Questions to Answer

On a piece of paper, prepare brief answers to these questions which we will ask you about at the
assessment:

1. When placed facing and perpendicular to a smooth surface such as a wall, what are the minimum
and maximum depths that the sensor can reliably measure?

2. Move the sonar so that it faces the wall at a non-orthogonal incidence angle. What is the maxi-
mum angular deviation from perpendicular to the wall at which it will still give sensible readings?

3. Do your sonar depth measurements have any systematic (non-zero mean) errors? To test this, set
up the sensor at a range of hand-measured depths (20cm, 40cm, 60cm, 80cm, 100cm) from a wall
and record depth readings. Are they consistently above or below what they should be?

4. What is the the accuracy of the sonar sensor and does it depend on depth? At each of two chosen
hand-measured depths (40cm and 100cm), make 10 separate depth measurements (each time
picking up and replacing the sensor) and record the values. Do you observe the same level of
scatter in each case?

5. In a range of general conditions for robot navigation, what fraction of the time do you think your
sonar gives garbage readings very far from ground truth?

4



Acknowledgments

Thanks to Lukas Platinsky, Jan Jachnik, Robert Lukierski, Jacek Zienkiewicz and Duncan White for
huge help in preparing the software, hardware and documentation for this practical.

5


	Introduction
	Objectives
	Representing and Displaying Uncertain Motion with a Particle Set (15 Marks)
	Web Interface and Displaying Output
	The Particle Set
	Generating Random Numbers

	Waypoint Navigation (5 Marks)
	Sonar Investigation (5 Marks)
	Sonar Calibration Questions to Answer



